21,518 research outputs found

    Accurate thickness measurement of easily compressed materials

    Get PDF
    Sheet of material is placed between two thin, uniform, and flat sheets of glass of known thickness; light pressure is applied by means of weights. Micrometer aids thickness measurement of sandwich. Thickness of two sheets of glass is then subtracted

    Improved insulating materials effective at extremely high temperatures

    Get PDF
    Wrapped molybdenum foil with silica fabric insulation and wrapped tantalum foil with carbon fabric insulation are usable to 1367 K and up to 2478 K, respectively, both offer marked space saving and efficiency in high temperature operations. Graph displays temperature profiles at end of firing period

    Selective tube roughening increases heat transfer capability

    Get PDF
    Selectively roughening inside surfaces of tubes increases the heat transfer capabilities, but minimizes the pressure drop. This technique is used to construct roughened test sections for hydrogen heat transfer studies

    A New Nearctic Triclistus (Hymenoptera: Ichneumonidae)

    Get PDF
    [excerpt] When Townes and Townes (1959) revised the genus Triclistus along with the rest of the Nearctic Metopiinae, they decided not to describe what was thought likely to be an additional new species, because only one male specimen was known. More recently, additional specimens, both males and females, were collected. From the females, which are even more distinctive than the males, it was easily seen that the species described below is indeed a new one

    A modification to linearized theory for prediction of pressure loadings on lifting surfaces at high supersonic Mach numbers and large angles of attack

    Get PDF
    A new linearized-theory pressure-coefficient formulation was studied. The new formulation is intended to provide more accurate estimates of detailed pressure loadings for improved stability analysis and for analysis of critical structural design conditions. The approach is based on the use of oblique-shock and Prandtl-Meyer expansion relationships for accurate representation of the variation of pressures with surface slopes in two-dimensional flow and linearized-theory perturbation velocities for evaluation of local three-dimensional aerodynamic interference effects. The applicability and limitations of the modification to linearized theory are illustrated through comparisons with experimental pressure distributions for delta wings covering a Mach number range from 1.45 to 4.60 and angles of attack from 0 to 25 degrees

    Application of an aerodynamic analysis method including attainable thrust estimates to low speed leading-edge flap design for supersonic cruise vehicles

    Get PDF
    A study of low speed leading-edge flap design for supersonic cruise vehicle was conducted. Wings with flaps were analyzed with the aid of a newly developed subsonic wing program which provides estimates of attainable leading-edge thrust. Results indicate that the thrust actually attainable can have a significant influence on the design and that the resultant flaps can be smaller and simpler than those resulting from more conventional approaches

    The design and analysis of simple low speed flap systems with the aid of linearized theory computer programs

    Get PDF
    The purpose here is to show how two linearized theory computer programs in combination may be used for the design of low speed wing flap systems capable of high levels of aerodynamic efficiency. A fundamental premise of the study is that high levels of aerodynamic performance for flap systems can be achieved only if the flow about the wing remains predominantly attached. Based on this premise, a wing design program is used to provide idealized attached flow camber surfaces from which candidate flap systems may be derived, and, in a following step, a wing evaluation program is used to provide estimates of the aerodynamic performance of the candidate systems. Design strategies and techniques that may be employed are illustrated through a series of examples. Applicability of the numerical methods to the analysis of a representative flap system (although not a system designed by the process described here) is demonstrated in a comparison with experimental data

    Infinitesimal Variations of Hodge Structure at Infinity

    Get PDF
    By analyzing the local and infinitesimal behavior of degenerating polarized variations of Hodge structure the notion of infinitesimal variation of Hodge structure at infinity is introduced. It is shown that all such structures can be integrated to polarized variations of Hodge structure and that, conversely, all are limits of infinitesimal variations of Hodge structure (IVHS) at finite points. As an illustration of the rich information encoded in this new structure, some instances of the maximal dimension problem for this type of infinitesimal variation are presented and contrasted with the "classical" case of IVHS at finite points

    Band structure of Charge Ordered Doped Antiferromagnets

    Full text link
    We study the distribution of electronic spectral weight in a doped antiferromagnet with various types of charge order and compare to angle resolved photoemission experiments on lightly doped La2−x_{2-x}Srx_xCuO4_4 (LSCO) and electron doped Nd2−x_{2-x}Cex_xCuO4±δ_{4\pm\delta}. Calculations on in-phase stripe and bubble phases for the electron doped system are both in good agreement with experiment including in particular the existence of in-gap spectral weight. In addition we find that for in-phase stripes, in contrast to anti-phase stripes, the chemical potential is likely to move with doping. For the hole doped system we find that ``staircase'' stripes which are globally diagonal but locally vertical or horizontal can reproduce the photoemission data whereas pure diagonal stripes cannot. We also calculate the magnetic structure factors of such staircase stripes and find that as the stripe separation is decreased with increased doping these evolve from diagonal to vertical separated by a coexistence region. The results suggest that the transition from horizontal to diagonal stripes seen in neutron scattering on underdoped LSCO may be a crossover between a regime where the typical length of straight stripe segments is longer than the inter-stripe spacing to one where it is shorter and that locally the stripes are always aligned with the Cu-O bonds.Comment: 13 pages, 16 figure
    • …
    corecore